ŽILINSKÁ UNIVERZITA V ŽILINE

Fakulta stavebná

BRIDGES

Examples

Jozef GOCÁL

Európsky sociálny fond

BRIDGES, Examples

Podl’a prednášok a návodu na cvičenia preložil / According to lectures and instructions for training translated:
Ing. Jozef Gocál, PhD.

Za jazykovú (a vecnú) správnost' zodpovedá autor. Text neprešiel jazykovou úpravou.
The author is responsible for the language (and objective) correctness. The text was not subject to language correction.

Vydala Žilinská univerzita v Žiline, Žilina 2008
Issued by University of Žilina, Žilina 2008
© Translation: GOCÁL Jozef, 2008

Tlač / Printed by

ISBN 978-80-554-0054-9

Vydané s podporou Európskeho sociálneho fondu, projekt SOP LZ - 2005/NP1-007 Issued with support of European Social Foundation, project SOP LZ - 2005/NP1-007

CONTENTS

1 PROJECT SETTINGS 4
2 LOADS AND INTERNAL FORCES 4
2.1 Permanent loads 4
2.1.1 Part 1 (carried by steel beams). 5
2.1. 2 Part 2 (carried by steel and concrete composite beams) 5
2.2 VARIABLE TRAFFIC LOADS 6
3 CROSS-SECTION DESIGN FOR ULTIMATE LIMIT STATE 10
3.1 COMBINATION OF LOADS FOR THE ULTIMATE LIMIT STATES 10
3.2 CHARACTERISTICS OF CROSS-SECTION 10
3.3 ASSESSMENT OF THE CROSS-SECTION BENDING RESISTANCE IN THE MID-SPAN 11
3.4 ASSESSMENT OF SHEAR RESISTANCE OF THE CROSS-SECTION AT THE SUPPORT 13
4 CHECK OF CROSS-SECTION FOR SERVICEABILITY LIMIT STATE 14
4.1 CHARACTERISTICS OF COMPOSITE CROSS SECTION FOR SHORT-TERM LOAD EFFECTS 14
4.2 CHARACTERISTICS OF COMPOSITE CROSS SECTION FOR LONG-TERM LOAD EFFECTS 15
4.3 CLASSIFICATION OF EFFECTIVE CROSS-SECTION 19
4.4 CALCULATION OF NORMAL STRESSES 20
4.4.1 Stresses caused by part 1 of permanent loads (carried by steel beam) 20
4.4.2 Stresses caused by part 2 of permanent loads (carried by composite beam) 20
4.4.3 Variable traffic load 24
4.4.4 Stresses caused by shrinkage of concrete 24
4.5 CROSS-SECTION CHECK. 28
5 DESIGN OF SHEAR CONNECTION 28
REFERENCES 30

DESIGN OF STEEL AND CONCRETE COMPOSITE ROAD BRIDGE

1 PROJECT SETTINGS

The objective is to design steel and concrete composite road bridge transferring the road C9.5 and two footpaths of width 1.5 m over a river. The main steel beams, made of steel S355, with span 40 m and relative spacing 3.4 m are simply supported on concrete gravity abutments. The steel beams are connected with reinforced concrete slab of depth 250 mm , made of concrete C $30 / 37$, by means of stud connectors $\phi 18 \mathrm{~mm}$ with ultimate strength $f_{u}=340 \mathrm{MPa}$. The bridge will be built without temporary staging. The cross section of the bridge is presented in Fig. 1.

Fig. 1 Cross section of the bridge

2 LOADS AND INTERNAL FORCES

2.1 Permanent loads

The permanent loads are represented by self weight of the superstructure as well as the weight of all permanently embedded parts of bridge. With regards to un-propped construction of the bridge, the permanent loads have to be divided into two parts. The part 1 corresponds to the first construction phase, when the concrete slab is not stiffened yet and therefore all the loads have to be carried by steel beams only. The second part of permanent loads corresponds to the construction phase after the concrete slab stiffening, when the steel and concrete composite structure is acting.

According to EN 1990, Annex 2, the partial safety factor should be considered for all permanent loads by value $\gamma_{G, s u p}=1.35$. However, the national annex to STN EN 1990, Annex 2 differs two values of partial safety factor $\gamma_{G, s u p}$ - for the self weight of bridge elements made in special workshops it is defined by value 1.25 , and for the self weight of bridge elements made in building site it is defined by value 1.35 .

2.1.1 Part 1 (carried by steel beams)

Loads:
Characteristic values $\gamma_{G} \quad$ Design values

- concrete slab:
$t_{s} \cdot w_{s} \cdot \gamma=0.25 \cdot 13.6 \cdot 25=\quad 85.00 \mathrm{kN} \cdot \mathrm{m}^{-1} \quad 1.35 \quad 114.75 \mathrm{kN} \cdot \mathrm{m}^{-1}$
- steel beams:

$$
n \cdot A_{a} \cdot \gamma=4 \cdot(0.3 \cdot 0.02+0.014 \cdot 1.94+0.4 \cdot 0.04) \cdot 80=15.73 \mathrm{kN} \cdot \mathrm{~m}^{-1} \quad 1.25 \quad 19.66 \mathrm{kN} \cdot \mathrm{~m}^{-1}
$$

- bracing:

$$
\begin{array}{r}
g_{b r} \cdot(n-1) \cdot a /(L / 4)=0.21 \cdot(4-1) \cdot 3.4 /(40 / 4)=\quad 0.21 \mathrm{kN} \cdot \mathrm{~m}^{-1} \\
\hline G_{1, k}=100.94 \mathrm{kN} \cdot \mathrm{~m}^{-1}
\end{array} G_{1, d}=134.67 \mathrm{kN} \cdot \mathrm{~m}^{-1}
$$

The 1st part of permanent loads falling to one steel beam:
$g_{1, k}=\frac{G_{1, k}}{n}=\frac{100.94}{4}=25.24 \mathrm{kN} \cdot \mathrm{m}^{-1} \quad g_{1, d}=\frac{G_{1, d}}{n}=\frac{134.67}{4}=33.67 \mathrm{kN} \cdot \mathrm{m}^{-1}$
Characteristic values of internal forces and moments in decisive cross sections:

$$
\begin{aligned}
& M_{g 1, k}=1 / 8 \cdot g_{1, k} \cdot L^{2}=1 / 8 \cdot 25.24 \cdot 40^{2}=5048.0 \mathrm{kNm} \\
& V_{g 1, k}=1 / 2 \cdot g_{1, k} \cdot L=1 / 2 \cdot 25.24 \cdot 40=\quad 504.8 \mathrm{kN}
\end{aligned}
$$

Design values of internal forces and moments in decisive cross sections:

$$
\begin{aligned}
& M_{g 1, E d}=1 / 8 \cdot g_{1, d} \cdot L^{2}=1 / 8 \cdot 33.67 \cdot 40^{2}=6734.0 \mathrm{kNm} \\
& V_{g 1, E d}=1 / 2 \cdot g_{1, d} \cdot L=1 / 2 \cdot 33.67 \cdot 40=\quad 673.4 \mathrm{kN}
\end{aligned}
$$

2.1.2 Part 2 (carried by steel and concrete composite beams)

Loads:
Characteristic values $\quad \gamma_{G} \quad$ Design values

- carriage way:	$t_{c} \cdot w_{c} \cdot \gamma=0.085 \cdot 9.5 \cdot 22=$	$17.77 \mathrm{kN} \cdot \mathrm{m}^{-1}$	1.35	$23.99 \mathrm{kN} \cdot \mathrm{m}^{-1}$
- insulation:	$t_{i} \cdot w_{s} \cdot \gamma=0.005 \cdot 13.6 \cdot 14=$	$0.95 \mathrm{kN} \cdot \mathrm{m}^{-1}$	1.25	$1.19 \mathrm{kN} \cdot \mathrm{m}^{-1}$
- footpaths:	$2 \cdot t_{f} \cdot w_{f} \cdot \gamma=2 \cdot 0.265 \cdot 2.3 \cdot 23=$	$28.04 \mathrm{kN} \cdot \mathrm{m}^{-1}$	1.35	$37.85 \mathrm{kN} \cdot \mathrm{m}^{-1}$
- parapets:	$2 \cdot 0.3$ (estimation) $=$	$0.60 \mathrm{kN} \cdot \mathrm{m}^{-1}$	1.25	$0.75 \mathrm{kN} \cdot \mathrm{m}^{-1}$
- guard-rails:	$2 \cdot 0.4$ (estimation) $=$	$0.80 \mathrm{kN} \cdot \mathrm{m}^{-1}$	1.25	$1.00 \mathrm{kN} \cdot \mathrm{m}^{-1}$
		$G_{2, k}=48.16 \mathrm{kN} \cdot \mathrm{m}^{-1}$	$G_{2, d}=64.78 \mathrm{kN} \cdot \mathrm{m}^{-1}$	

The 2nd part of permanent loads falling to one composite beam:

$$
g_{2, k}=\frac{G_{2, k}}{n}=\frac{48.16}{4}=12.04 \mathrm{kN} \cdot \mathrm{~m}^{-1} \quad g_{2, d}=\frac{G_{2, d}}{n}=\frac{64.78}{4}=16.20 \mathrm{kN} \cdot \mathrm{~m}^{-1}
$$

Characteristic values of internal forces and moments in decisive cross sections:

$$
\begin{aligned}
& M_{g 2, k}=1 / 8 \cdot g_{2, k} \cdot L^{2}=1 / 8 \cdot 12.04 \cdot 40^{2}=2408.0 \mathrm{kNm} \\
& V_{g 2, k}=1 / 2 \cdot g_{2, k} \cdot L=1 / 2 \cdot 12.04 \cdot 40=\quad 240.8 \mathrm{kN}
\end{aligned}
$$

Design values of internal forces and moments in decisive cross sections:

$$
\begin{aligned}
& M_{g 2, E d}=1 / 8 \cdot g_{2, d} \cdot L^{2}=1 / 8 \cdot 16.20 \cdot 40^{2}=3240.0 \mathrm{kNm} \\
& V_{g 2, E d}=1 / 2 \cdot g_{2, d} \cdot L=1 / 2 \cdot 16.20 \cdot 40=\quad 324.0 \mathrm{kN}
\end{aligned}
$$

2.2 Variable traffic loads

Variable loads are represented mainly by vertical effects of road traffic load, which should be generally considered by means of four loading models, defined in STN EN 1991-2. The main loading system is represented by Load model 1 (LM1), consisting of concentrated tandem system (TS) and uniformly distributed load (UDL system) situated in carriage way divided into several notional lanes. The LM1 expresses majority of passenger and freight service and should be used for verification of global and local effects of traffic as well.

The load model 2 (LM2) is characterised by single axle vehicle and it may be determining mainly for short structural members with length 3-7 m. It is intended mainly for verification of local effects of traffic.

The load model 3 (LM3) is intended for modelling special vehicles (e.g. for industrial traffic), moving pass the special permitted road tracks reserved for heavy loads. This model should be used for verification of global and local effects of traffic as well.
The load model 4 (LM4) expresses the load caused by moving mass of people and it should by used for general verification of a structure.
It may be simply proved that the LM2 and LM4 have less unfavourable effects on the superstructure strain than the LM1. The LM3 will not be considered for simplification. Consequently, only effects of the LM1 will be taken into account. These effects should be combined with horizontal effects of traffic load (braking forces) and pedestrian load of footpaths as well. While the braking forces will be neglected, the effect of pedestrian load of footpaths will be taken into account by reduced combination value.

Transversal arrangement of LM1 should be considered using the influence line of transversal distribution obtained by method of rigid transversal bracing (Fig. 2).

Fig. 2 Influence line of transversal distribution for the outer beam "a"

Taking into account the bridge symmetry, only beams "a" and "b" need to be verified. Coordinates of the influence line for the outer beam "a" are given by equation:
$\eta_{a i}=\eta_{a i, 1}+\eta_{a i, 2}=\frac{I_{y a}}{\sum_{i=a}^{d} I_{y i}}+\frac{e_{a} \cdot I_{y a}}{\sum_{i=a}^{d} I_{y i} \cdot e_{i}^{2}} \cdot e_{i}=\frac{1}{n}+\frac{e_{a}}{\sum_{i=a}^{d} e_{i}^{2}} \cdot e_{i}$
$\eta_{a a}=\frac{1}{4}+\frac{1.5 a}{\left[(1.5 a)^{2}+(0.5 a)^{2}\right] \cdot 2} \cdot 1.5 a=0.7$
$\eta_{a b}=\frac{1}{4}+\frac{1.5 a}{\left[(1.5 a)^{2}+(0.5 a)^{2}\right] \cdot 2} \cdot 0.5 a=0.4$
$\eta_{a c}=\frac{1}{4}+\frac{1.5 a}{\left[(1.5 a)^{2}+(0.5 a)^{2}\right] \cdot 2} \cdot(-0.5 a)=0.1$
$\eta_{a c}=\frac{1}{4}+\frac{1.5 a}{\left[(1.5 a)^{2}+(0.5 a)^{2}\right] \cdot 2} \cdot(-1.5 a)=-0.2$

Similarly, coordinates of the influence line for the inner beam "b" are given by equation:
$\eta_{b i}=\eta_{b i, 1}+\eta_{b i, 2}=\frac{I_{y b}}{\sum_{i=a}^{d} I_{y i}}+\frac{e_{b} \cdot I_{y b}}{\sum_{i=a}^{d} I_{y i} \cdot e_{i}^{2}} \cdot e_{i}=\frac{1}{n}+\frac{e_{b}}{\sum_{i=a}^{d} e_{i}^{2}} \cdot e_{i}$
$\eta_{b a}=\frac{1}{4}+\frac{0.5 a}{\left[(1.5 a)^{2}+(0.5 a)^{2}\right] \cdot 2} \cdot 1.5 a=0.4$
$\eta_{b b}=\frac{1}{4}+\frac{0.5 a}{\left[(1.5 a)^{2}+(0.5 a)^{2}\right] \cdot 2} \cdot 0.5 a=0.3$
$\left.\begin{array}{l}\eta_{b c}=\frac{1}{4}+\frac{0.5 a}{\left[(1.5 a)^{2}+(0.5 a)^{2}\right] \cdot 2} \cdot(-0.5 a)=0.2 \\ \eta_{b d}=\frac{1}{4}+\frac{0.5 a}{\left[(1.5 a)^{2}+(0.5 a)^{2}\right] \cdot 2} \cdot(-1.5 a)=0.1\end{array}\right\} \sum_{i=a}^{d} \eta_{a i}=1.0$

Arrangement of the Load Model 1 together with the pedestrian load of footpaths in transversal direction is presented in Fig. 3. All the loads are considered in the most unfavourable positions with regard to the particular influence line of transversal distribution. The lightening effects are not taken into account, however, the tandem systems are always considered as complete. Classification factors $\alpha_{Q i}$ and $\alpha_{q i}$ may be generally considered within an interval 0.8-1.0. The values applied here are considered according to national annex to STN EN 1991-2.

Fig. 3 Arrangement of LM1 with pedestrian load and coordinates of the influence lines

The outer beam "a" is affected by following loads:

- from tandem system (TS):

$$
\begin{aligned}
F_{T S} & =\alpha_{Q 1} Q_{1} / 2 \cdot\left(\eta_{11}+\eta_{12}\right)+\alpha_{Q 2} Q_{2} / 2 \cdot\left(\eta_{21}+\eta_{22}\right)+\alpha_{Q 3} Q_{3} / 2 \cdot\left(\eta_{31}+\eta_{32}\right)= \\
& =0.9 \cdot 300 / 2 \cdot(0.625+0.449)+0.9 \cdot 200 / 2 \cdot(0.360+0.184)+0.9 \cdot 100 / 2 \cdot(0.096-0.081)= \\
& =194.63 \mathrm{kN}
\end{aligned}
$$

- from UDL system:

$$
\begin{aligned}
p_{U D L} & =\alpha_{q 1} q_{1} \cdot A_{\eta 1}+\alpha_{q 2} q_{2} \cdot A_{\eta 2}+\alpha_{q 3} q_{3} \cdot A_{\eta 3}= \\
& =0.9 \cdot 9.0 \cdot 1.6103+1.0 \cdot 2.5 \cdot 0.8162+1.0 \cdot 2.5 \cdot 0.1106=15.36 \mathrm{kN} \cdot \mathrm{~m}^{-1}
\end{aligned}
$$

- from pedestrian load of footpaths:

$$
p_{f}=q_{f} \cdot A_{\eta f}=3.0 \cdot 1.2856=3.86 \mathrm{kN} \cdot \mathrm{~m}^{-1}
$$

The inner beam "b" is affected by following loads:

- from tandem system (TS):

$$
\begin{aligned}
F_{T S} & =\alpha_{Q 1} Q_{1} / 2 \cdot\left(\eta_{11}+\eta_{12}\right)+\alpha_{Q 2} Q_{2} / 2 \cdot\left(\eta_{21}+\eta_{22}\right)+\alpha_{Q 3} Q_{3} / 2 \cdot\left(\eta_{31}+\eta_{32}\right)= \\
& =0.9 \cdot 300 / 2 \cdot(0.375+0.316)+0.9 \cdot 200 / 2 \cdot(0.287+0.228)+0.9 \cdot 100 / 2 \cdot(0.199+0.140)= \\
& =154.89 \mathrm{kN}
\end{aligned}
$$

- from UDL system:

$$
\begin{aligned}
p_{U D L} & =\alpha_{q 1} q_{1} \cdot A_{\eta 1}+\alpha_{q 2} q_{2} \cdot A_{\eta 2}+\alpha_{q 3} q_{3} \cdot A_{\eta 3}+\alpha_{q r} q_{r} \cdot A_{\eta r}= \\
& =0.9 \cdot 9.0 \cdot 1.0368+1.0 \cdot 2.5 \cdot 0.7721+1.0 \cdot 2.5 \cdot 0.5074+1.0 \cdot 2.5 \cdot 0.0588=11.74 \mathrm{kN} \cdot \mathrm{~m}^{-1}
\end{aligned}
$$

- from pedestrian load of footpaths:

$$
p_{f}=q_{f} \cdot\left(A_{\eta f 1}+A_{\eta f 2}\right)=3.0 \cdot(0.7060+0.1265)=2.50 \mathrm{kN} \cdot \mathrm{~m}^{-1}
$$

Characteristic values of internal forces and moments in decisive cross sections:

The influence lines for calculation of internal forces and moments in longitudinal direction are presented in Fig. 4. All the loads from transversal distribution are considered in the most unfavourable positions with regard to the particular influence line. With regards to the higher values of all particular loads, only the outer beam " a " needs to be further evaluated.

Fig. 4 Influence lines for bending moment and shear force

$$
\begin{aligned}
M_{L M 1, k} & =M_{T S, k}+M_{U D L, k}=2 \cdot F_{T S} \cdot \mu_{1}+p_{U D L} \cdot A_{\mu}=2 \cdot 194.63 \cdot 9.7+15.36 \cdot 200.0= \\
& =3775.82+3072.00=6847.82 \mathrm{kNm} \\
M_{f, k} & =p_{f} \cdot A_{\mu}=3.86 \cdot 200.0=772.00 \mathrm{kNm} \\
V_{L M 1, k} & =V_{T S, k}+V_{U D L, k}=F_{T S} \cdot\left(\mu_{1}+\mu_{2}\right)+p_{U D L} \cdot A_{\mu}=194.63 \cdot(1.0+0.97)+15.36 \cdot 20.0= \\
& =383.42+307.20=690.62 \mathrm{kN} \\
V_{f, k}= & p_{f} \cdot A_{\mu}=3.86 \cdot 20.0=77.20 \mathrm{kN}
\end{aligned}
$$

According to STN EN 1990, Annex 2, the load model LM1 consisting of TS system and UDL system and the reduced pedestrian load of footpaths make together the load group "grla", which should be considered as one multi-part variable load. The resultant characteristic values of internal forces and moments corresponding to the load group "gr1a" are:

$$
\begin{aligned}
& M_{g r 1 a, k}=M_{T S, k}+M_{U D L, k}+M_{f, k}=3775.82+3072.00+772.00=7619.82 \mathrm{kNm} \\
& V_{g r 1 a, k}=V_{L M 1, k}+V_{f, k}=690.62+77.20=767.82 \mathrm{kN}
\end{aligned}
$$

3 CROSS-SECTION DESIGN FOR ULTIMATE LIMIT STATE

According to STN EN 1994-2, the effects of creep and shrinkage of concrete, as well as the effects of sequence of construction and temperature effects may be neglected in analysis for verifications of ultimate limit states other than fatigue, providing that all cross-sections of the composite member are in class 1 or 2 . Then, the verification consists in comparison of the design bending moment and the design shear force, respectively, caused by the most unfavourable combination of actions, with the design bending resistance of composite crosssection and shear resistance of the steel beam web, respectively.

3.1 Combination of loads for the ultimate limit states

Design value of bending moment affecting the outer beam " a " at the mid-span is:

$$
\begin{aligned}
M_{E d} & =\sum\left(\gamma_{G j} \cdot M_{g k, j}\right)+\gamma_{Q, g r 1 a} \cdot M_{g r 1 a, k}=M_{g 1, E d}+M_{g 2, E d}+\gamma_{Q, g r 1 a} \cdot M_{g r 1 a, k}= \\
& =6734.0+3240.0+1.35 \cdot 7619.82=20260.76 \mathrm{kNm}
\end{aligned}
$$

Design value of shear force affecting the outer beam "a" at the support is:

$$
\begin{aligned}
V_{E d} & =\sum\left(\gamma_{G j} \cdot V_{g k, j}\right)+\gamma_{Q, g r 1 a} \cdot V_{g r 1 a, k}=V_{g 1, E d}+V_{g 2, E d}+\gamma_{Q, g r 1 a} \cdot V_{g r 1 a, k}= \\
& =673.4+324.0+1.35 \cdot 767.82=2033.96 \mathrm{kN}
\end{aligned}
$$

3.2 Characteristics of cross-section

Effective width of the concrete slab at the mid-span of beam "a" is defined by an expression
$b_{e f f}=b_{0}+\sum b_{e i}$.
Estimating distance of the outer queues of studs $b_{0}=180 \mathrm{~mm}$, the partial effective widths are:
$b_{e, 1}=b_{e, 2}=L_{e} / 8=40000 / 8=5000 \mathrm{~mm}>b_{1}=b_{2}=1610 \mathrm{~mm} \Rightarrow b_{e, 1}=b_{e, 2}=1610 \mathrm{~mm}$.
Consequently, the total effective width of concrete slab is $b_{\text {eff }}=3400 \mathrm{~mm}$, regardless of the distance of outer queues of studs b_{0}.

Steel beam:

$A_{a}=0.050 \mathrm{~m}^{2}$
$I_{y a}=0.029997 \mathrm{~m}^{4}$

Concrete slab:

$A_{c}=0.850 \mathrm{~m}^{2}$
$I_{y c}=0.004427 \mathrm{~m}^{4}$

Fig. 5 Cross section of the composite beam

Material parameters of steel: (according to STN EN 1993-2)
Class of steel: S355
Characteristic yield strength: $f_{y k}=355 \mathrm{MPa}$
Partial safety factor: $\gamma_{M 0}=1.0, \gamma_{M 1}=1.1$
Design yield strength: $f_{y d}=f_{y k} / \gamma_{M}=355 \mathrm{MPa}$
Modulus of elasticity: $E=210000 \mathrm{MPa}$

Material parameters of concrete: (according to STN EN 1992-1-1)

Class of concrete: C30/37
Characteristic cylinder compression strength: $f_{c k}=30 \mathrm{MPa}$
Partial safety factor: $\gamma_{C}=1.5$
Design cylinder compression strength: $f_{c d}=f_{c k} / \gamma_{C}=20 \mathrm{MPa}$
Modulus of elasticity: $E_{c m}=33000 \mathrm{MPa}$

3.3 Assessment of the cross-section bending resistance in the mid-span

Location of plastic neutral axis and classification of composite cross section

Basically, there are three possible locations of the neutral axis. Either it lies in concrete slab, or in upper flange of steel beam, or it passes through the web of the steel beam. Its location results from the equilibrium condition of normal forces in the cross section at ultimate limit state.

Fig. 6 Tenseness at ultimate limit state for neutral axis lying in concrete slab

If $A_{c} \cdot 0.85 f_{c d} \geq A_{a} \cdot f_{y d}$, the neutral axis lies in concrete slab (Fig. 6) and its location results from the following equilibrium condition

$$
N_{c}=N_{a}
$$

$b_{e f f} \cdot z \cdot 0.85 f_{c d}=A_{a} \cdot f_{y d} \Rightarrow z=\frac{A_{a} \cdot f_{y d}}{b_{e f f} \cdot 0.85 f_{c d}}$
Te whole steel part is in tension, and so the classification of cross section is not needed. The plastic bending resistance results from the moment equilibrium condition in the cross section
$M_{p l, R d}=N_{a} \cdot\left(z_{a}-0.5 z\right)=A_{a} \cdot f_{y d} \cdot\left(z_{a}-0.5 z\right)$.

Fig. 7 Tenseness at ultimate limit state for neutral axis lying in steel beam

If $A_{c} \cdot 0.85 f_{c d}<A_{a} \cdot f_{y d}$, the neutral axis is situated in the steel beam (Fig. 7) and the equilibrium condition of normal forces at ultimate limit state is defined by equation
$N_{c}+N_{a c}=N_{a}$
$A_{c} \cdot 0.85 f_{c d}+A_{a c} \cdot f_{y d}=A_{a t} \cdot f_{y d}=\left(A_{a}-A_{a c}\right) \cdot f_{y d}$
$A_{c} \cdot 0.85 f_{c d}+2 \cdot A_{a c} \cdot f_{y d}=A_{a} \cdot f_{y d} \Rightarrow \quad A_{a c}=\frac{A_{a} \cdot f_{y d}-A_{c} \cdot 0.85 f_{c d}}{2 \cdot f_{y d}}$
When the area of steel compression part $A_{a c} \leq b_{f 1} \cdot t_{f 1}$, the neutral axis lies in the upper flange, in other case it passes through the web of steel beam. The location of neutral axis is then given as follows
$z= \begin{cases}t_{c}+\frac{A_{a c}}{b_{f 1}} & \text { for } A_{a c} \leq b_{f 1} \cdot t_{f 1} \\ t_{c}+t_{f 1}+\frac{A_{a c}-b_{f 1} \cdot t_{f 1}}{t_{w}} & \text { for } A_{a c}>b_{f 1} \cdot t_{f 1}\end{cases}$
In the case of neutral axis laying in the upper flange of steel beam the classification of cross section is not needed. If the neutral axis passes through the web, classification of the compressed part of the web according to STN EN 1993-1-1 is necessary. The steel compression flange that is restrained from buckling by effective attachment to the concrete flange by shear connectors may be assumed to be in class 1 , if the spacing of connectors is in accordance with the shear connection detailing given in 6.6.5.5 STN EN 1994-2.
Providing that the compression part of steel web is classified into class 1 or 2 , the plastic bending resistance results from the moment equilibrium condition in the composite cross section

$$
\begin{aligned}
& M_{p l, R d}=N_{a t} \cdot\left(z_{a t}-0.5 t_{c}\right)-N_{a c} \cdot\left(z_{a c}-0.5 t_{c}\right)=N_{a} \cdot\left(z_{a}-0.5 t_{c}\right)-2 N_{a c} \cdot\left(z_{a c}-0.5 t_{c}\right) \\
& M_{p l, R d}=\left[A_{a} \cdot\left(z_{a}-0.5 t_{c}\right)-2 \cdot A_{a c} \cdot\left(z_{a c}-0.5 t_{c}\right)\right] \cdot f_{y d}
\end{aligned}
$$

Applying the approach mentioned above, for the cross section presented in Fig. 5 it is valid

$$
A_{c} \cdot 0.85 f_{c d}=0.85 \cdot 0.85 \cdot 20=14.45 \mathrm{MN}<A_{a} \cdot f_{y d}=0.05 \cdot 355=17.75 \mathrm{MN}
$$

\Rightarrow neutral axis lies in steel beam
The area of steel compression part is

$$
\begin{aligned}
& A_{a c}=\frac{A_{a} \cdot f_{y d}-A_{c} \cdot 0.85 f_{c d}}{2 \cdot f_{y d}}=\frac{17.75-14.45}{2 \cdot 355}=0.00465 \mathrm{~m}^{2} \\
& A_{a c}=0.00465 \mathrm{~m}^{2}<b_{f 1} \cdot t_{f 1}=0.3 \cdot 0.02=0.006 \mathrm{~m}^{2} \quad \Rightarrow \text { neutral axis lies in upper flange }
\end{aligned}
$$

The location of plastic neutral axis is

$$
\begin{aligned}
& z=t_{c}+\frac{A_{a c}}{b_{f 1}}=0.25+\frac{0.00465}{0.3}=0.2655 \mathrm{~m} \\
& z_{a c}=\frac{z+t_{c}}{2}=\frac{0.2655+0.25}{2}=0.25775 \mathrm{~m}
\end{aligned}
$$

Since the neutral axis lies in the upper flange of steel beam, therefore the cross section may be assumed to be in class 1 .

Check of the plastic bending resistance of composite cross section in the mid-span:

$M_{p l, R d}=\left[A_{a} \cdot\left(z_{a}-0.5 t_{c}\right)-2 \cdot A_{a c} \cdot\left(z_{a c}-0.5 t_{c}\right)\right] \cdot f_{y d}$
$M_{p l, R d}=[0.05 \cdot(1.475-0.5 \cdot 0.25)-2 \cdot 0.00465 \cdot(0.25775-0.5 \cdot 0.25)] \cdot 355 \cdot 10^{3}$

3.4 Assessment of shear resistance of the cross-section at the support

The shear resistance of the cross section is given by shear resistance of the web:

$$
V_{p l, R d}=A_{w} \cdot f_{y d} / \sqrt{3}=2.0 \cdot 0.014 \cdot 355 \cdot 10^{3} / \sqrt{3}=\underline{\mathbf{5 7 3 8 . 8 6} \mathbf{k N}}>V_{E d}=\underline{\mathbf{2 0 3 3 . 9 6} \mathbf{~ k N}}
$$

The web of steel beam is satisfactory. However, the effect of shear buckling should be checked yet according to STN EN 1993-1-5. The shear buckling coefficient k_{τ} is (for the web without longitudinal stiffeners and with rigid transverse stiffeners at distances $a=10 \mathrm{~m}$):
$k_{\tau}=5.34+4 \cdot\left(h_{w} / a\right)^{2}=5.34+4 \cdot(2.0 / 10)^{2}=5.5$
The web slenderness parameter may be taken as:
$\bar{\lambda}_{w}=\frac{h_{w} / t_{w}}{37.4 \cdot \varepsilon \cdot \sqrt{k_{\tau}}}=\frac{2000 / 14}{37.4 \cdot \sqrt{\frac{235}{355}} \cdot \sqrt{5.5}}=2.002>1,08 \Rightarrow$
Contribution from the web to shear buckling resistance is
$\chi_{w}=\frac{1.37}{0.7+\bar{\lambda}_{w}}=\frac{1.37}{0.7+2.002}=0.507$

Neglecting the contribution of flanges χ_{f}, the reduction factor for shear buckling is
$\chi_{V}=\chi_{w}+\chi_{f}=0.507+0.0=0.507$
The design shear resistance (with shear buckling effect) is

$$
\begin{aligned}
& V_{b, R d}=\frac{\chi_{V} \cdot f_{y w} \cdot h_{w} \cdot t_{w}}{\sqrt{3} \cdot \gamma_{M 1}}=\frac{0.507 \cdot 355 \cdot 10^{3} \cdot 2.0 \cdot 0.014}{\sqrt{3} \cdot 1.1}=2645.09 \mathrm{kN} \\
& V_{b, R d}=\underline{\mathbf{2 6 4 5 . 0 9} \mathbf{~ k N}}>V_{E d}=\underline{\mathbf{2 0 3 3 . 9 6} \mathbf{~ k N}}
\end{aligned}
$$

4 CHECK OF CROSS-SECTION FOR SERVICEABILITY LIMIT STATE

In the case of composite members with cross-section classified in class 1 or 2 , it should be further proved that the nominal stresses in the limiting cross sections resulting from the characteristic load combinations (partial safety factors $\gamma_{G i}=\gamma_{Q i}=1.0$) do not exceed the design strength of materials, i.e. the beam stays in elastic conditions. The calculation of stresses should take into account (apart from other effects) the effect of shear lag, creep and shrinkage of concrete and sequence of construction.

4.1 Characteristics of composite cross section for short-term load effects

Effective width of the concrete slab at the mid-span of beam "a" is the same as in ultimate limit states. Calculation of the elastic resistance to bending is based on the effective crosssection, in which the concrete part is transformed to equivalent steel part by means of the modular ratio for short-term loading $n_{0}=E_{a} / E_{c m}$.

Fig. 8 Effective cross section of the composite beam
1(2) - upper (bottom) edge of concrete slab, 3(4) - upper (bottom) edge of steel beam $C_{g a}\left(C_{g c}\right)\left[C_{g e f}\right]$ - centre of gravity of steel beam (concrete slab) [effective cross-section]

Characteristics of concrete slab:

$A_{c}=3.4 \cdot 0.25=0.850 \mathrm{~m}^{2}$
$I_{y c}=\frac{1}{12} \cdot 3.4 \cdot 0.25^{3}=0.004427 \mathrm{~m}^{4}$
Characteristics of steel beam:
$A_{a}=0.4 \cdot 0.04+0.014 \cdot 2.0+0.3 \cdot 0.02=0.050 \mathrm{~m}^{2}$
$z_{a 4}=\frac{0.4 \cdot 0.04 \cdot 0.02+0.014 \cdot 2.0 \cdot 1.04+0.3 \cdot 0.02 \cdot 2.05}{0.05}=0.835 \mathrm{~m}$
$z_{a 3}=2.060-0.835=1.225 \mathrm{~m}$

$$
\begin{aligned}
I_{y a}= & \frac{1}{12} \cdot\left(0.4 \cdot 0.04^{3}+0.014 \cdot 2.0^{3}+0.3 \cdot 0.02^{3}\right)+0.4 \cdot 0.04 \cdot 0.815^{2}+0.014 \cdot 2.0 \cdot 0.205^{2}+ \\
& +0.3 \cdot 0.02 \cdot 1.215^{2}=0.029997 \mathrm{~m}^{4}
\end{aligned}
$$

Characteristics of effective cross section of composite beam:

$n_{0}=E_{a} / E_{c m}=210 / 33=6.364$
$A_{e f}=A_{a}+A_{c} / n_{0}=0.05+0.85 / 6.364=0.18357 \mathrm{~m}^{2}$
$r_{c}=\frac{A_{a} \cdot r}{A_{e f}}=\frac{0.05 \cdot 1.35}{0.18357}=0.368 \mathrm{~m}$
$r_{a}=\frac{A_{c} / n_{0} \cdot r}{A_{e f}}=\frac{0.85 / 6.36 \cdot 1.35}{0.18357}=0.982 \mathrm{~m}$
$I_{y, e f}=I_{y a}+I_{y c} / n_{0}+A_{a} \cdot r_{a}^{2}+A_{c} / n_{0} \cdot r_{c}^{2}=I_{y a}+I_{y c} / n_{0}+A_{e f} \cdot r_{a} \cdot r_{c}$
$I_{y, e f}=0.029997+0.004427 / 6.364+0.18357 \cdot 0.982 \cdot 0.368=0.097018 \mathrm{~m}^{4}$

4.2 Characteristics of composite cross section for long-term load effects

Concrete is a material underlying to creep, which may be simply defined as an increase of deformation in time under persistent long-term loading. This effect may be mathematically described as a degradation of modulus of elasticity, which in composite girder results in gradual migration of normal stresses from the concrete slab to the steel beam. The effects of creep may be taken into account by using modular ratios n_{L} for calculation of the effective cross-section characteristics. The modular ratios depending on the type of loading are given by expression
$n_{L}=n_{0}\left(1+\psi_{L} \cdot \phi_{t}\right)$
where n_{0} is the modular ratio for short-term loading, ϕ_{t} is the creep coefficient $\phi\left(t, t_{0}\right)$ depending on the age (t) of concrete at the moment considered and the age $\left(t_{0}\right)$ at loading, and ψ_{L} is the creep multiplier depending on the type of loading, which may be taken as 1.1 for permanent loads, 0.55 for primary and secondary effects of shrinkage and 1.5 for pre-stressing by imposed deformations.
According to EN 1992-1-1, Annex B, the creep coefficient $\phi\left(t, t_{0}\right)$ may be calculated from expression:

$$
\phi\left(t, t_{0}\right)=\phi_{0} \cdot \beta_{c}\left(t-t_{0}\right),
$$

where ϕ_{0} is the theoretical creep coefficient given by expression
$\phi_{0}=\phi_{R H} \cdot \beta\left(f_{c m}\right) \cdot \beta\left(t_{0}\right)$.

Coefficient $\phi_{R H}$ expresses an effect of relative humidity of environment RH (\%) on the theoretical creep coefficient and is given by expression
$\phi_{R H}= \begin{cases}1+\frac{1-R H / 100}{0,1 \cdot \sqrt[3]{h_{0}}} & \text { for } f_{c m} \leq 35 M P a \\ {\left[1+\frac{1-R H / 100}{0,1 \cdot \sqrt[3]{h_{0}}} \cdot \alpha_{1}\right] \cdot \alpha_{2}} & \text { for } f_{c m} \geq 35 M P a\end{cases}$
where $h_{0}(\mathrm{~mm})$ is equivalent depth of slab $h_{0}=\frac{2 A_{c}}{u}, A_{c}$ is area of the concrete slab and u is the perimeter of member that is in contact with atmosphere.
Coefficient $\beta\left(f_{c m}\right)$ expresses an effect of concrete strength on the theoretical creep coefficient and is given by expression
$\beta\left(f_{c m}\right)=\frac{16,8}{\sqrt{f_{c m}}}$
where $f_{c m}=f_{c k}+8$ is the mean compression strength of concrete at the age 28 days.
Coefficient $\beta\left(t_{0}\right)$ expresses an effect of the age of concrete at loading on the theoretical creep coefficient and is given by expression

$$
\beta\left(t_{0}\right)=\frac{1}{0,1+t_{0}^{0,20}} .
$$

Coefficient $\beta_{c}\left(t-t_{0}\right)$ describes development of creep in time and may by estimated by using following expression
$\beta_{c}\left(t-t_{0}\right)=\left[\frac{t-t_{0}}{\beta_{H}+t-t_{0}}\right]^{0,3}$
Coefficient β_{H} depends on relative humidity $R H(\%)$ and equivalent size of member h_{0} and is given by expression
$\beta_{H}= \begin{cases}1,5 \cdot\left[1+(0,012 \cdot R H)^{18}\right] \cdot h_{0}+250 \leq 1500 & \text { for } f_{c m} \leq 35 \\ 1,5 \cdot\left[1+(0,012 \cdot R H)^{18}\right] \cdot h_{0}+250 \cdot \alpha_{3} \leq 1500 & \text { for } f_{c m} \geq 35\end{cases}$
Coefficients $\alpha_{1}, \alpha_{2}, \alpha_{3}$ taking into account the concrete strength are defined as follows
$\alpha_{1}=\left(\frac{35}{f_{c m}}\right)^{0.7} \quad \alpha_{2}=\left(\frac{35}{f_{c m}}\right)^{0.2} \quad \alpha_{3}=\left(\frac{35}{f_{c m}}\right)^{0.5}$.

Creep coefficient for second part of permanent loads:

On the assumption that the second part of permanent loads will start to affect the composite girder two months after concreting ($t_{0}=60$ days), the bridge will be introduced into service four months after concreting ($t_{i n}=120$ days) and the planned service life of the bridge is 100 years ($t_{\text {fin }}=36525$ days), then at the relative humidity $R H=80 \%$ it will be valid:
$h_{0}=\frac{2 A_{c}}{u}=\frac{2 \cdot 0.85}{2 \cdot 3.4}=0.25 \mathrm{~m}$
$f_{c m}=30+8=38 \mathrm{MPa}>35 \mathrm{MPa}$
$\alpha_{1}=\left(\frac{35}{38}\right)^{0.7}=0.94406 \quad \alpha_{2}=\left(\frac{35}{38}\right)^{0.2}=0.98369 \quad \alpha_{3}=\left(\frac{35}{38}\right)^{0.5}=0.95971$
$\beta_{H}=1,5 \cdot\left[1+(0,012 \cdot 80)^{18}\right] \cdot 250+250 \cdot 0.95971=794.779<1500$
$\beta_{c}\left(t-t_{0}\right)=\left[\frac{120-60}{794.779+120-60}\right]^{0,3}=0.45070 \quad$ for $t=120$ days
$\beta_{c}\left(t-t_{0}\right)=\left[\frac{36525-60}{794.779+36525-60}\right]^{0,3}=0.99355 \quad$ for $t=36525$ days
$\beta\left(t_{0}\right)=\frac{1}{0,1+60^{0,20}}=0.42231$
$\beta\left(f_{c m}\right)=\frac{16,8}{\sqrt{38}}=2.72532$
$\phi_{R H}=\left[1+\frac{1-85 / 100}{0,1 \cdot \sqrt[3]{250}} \cdot 0.94406\right] \cdot 0.98369=1.20481$
$\phi_{0}=1.20481 \cdot 2.72532 \cdot 0.42231=1.38665$
The creep coefficient at the time of introducing into service ($t=120$ days) is:
$\phi_{t}=\phi(120,60)=1.38665 \cdot 0.45070=0.62496$
The creep coefficient at the end of service life ($t=36525$ days) is:
$\phi_{t}=\phi(36525,60)=1.38665 \cdot 0.99355=1.37771$

Creep coefficient for effect of shrinkage of concrete:

Shrinkage of concrete is a long-term process, independent on acting load, which is characteristic by gradual decreasing volume of concrete. Since the steel beam restrains to free deformation of the concrete slab, there occur additional strains in the composite girder. According to STN EN 1994-2, the creep coefficient due to shrinkage should be calculated on the assumption that the shrinkage will start from the first day after concreting ($t_{0}=1$ day).
$\beta_{c}\left(t-t_{0}\right)=\left[\frac{120-1}{794.779+120-1}\right]^{0,3}=0.54251 \quad$ for $t=120$ days
$\beta_{c}\left(t-t_{0}\right)=\left[\frac{36525-1}{794.779+36525-1}\right]^{0,3}=0.99356 \quad$ for $t=36525$ days
$\beta\left(t_{0}\right)=\frac{1}{0,1+1^{0,20}}=0.90909$
$\phi_{0}=1.20481 \cdot 2.72532 \cdot 0.90909=2.98499$

The creep coefficient at the time of introducing into service ($t=120$ days) is:

$$
\phi_{t}=\phi(120,60)=2.98499 \cdot 0.54251=1.61939
$$

The creep coefficient at the end of service life ($t=36525$ days):
$\phi_{t}=\phi(36525,60)=2.98499 \cdot 0.99356=2.96577$

Modular ratios for long-term load effects:

- for the second part of permanent loads at the time $t=120$ days:

$$
n_{L}=n_{0}\left(1+\psi_{L} \cdot \phi_{t}\right)=6.364 \cdot(1+1.1 \cdot 0.62496)=10.738
$$

- for the second part of permanent loads at the time $t=36525$ days:

$$
n_{L}=n_{0}\left(1+\psi_{L} \cdot \phi_{t}\right)=6.364 \cdot(1+1.1 \cdot 1.37771)=16.008
$$

- for the shrinkage effects at the time $t=120$ days:

$$
n_{L}=n_{0}\left(1+\psi_{L} \cdot \phi_{t}\right)=6.364 \cdot(1+0.55 \cdot 1.61939)=12.032
$$

- for the shrinkage effects at the time $t=36525$ days:

$$
n_{L}=n_{0}\left(1+\psi_{L} \cdot \phi_{t}\right)=6.364 \cdot(1+0.55 \cdot 2.96577)=16.744
$$

Characteristics of effective cross-section of composite beam for long-term load effects:

The effective cross-section characteristics corresponding to calculated modular ratios n_{L} are summarised in Tab. 1.

Tab. 1 Effective cross-section characteristics

Load		2nd part of permanent loads		Shrinkage			
Age of bridge	[days $]$	60	120	36525	1	120	36525
$\phi\left(t, t_{0}\right)$	$[-]$	-	0.625	1.378	-	1.619	2.966
ψ_{L}	$[-]$	-	1.100	1.100	-	0.550	0.550
$n_{0}=E_{a} / E_{c m}$	$[-]$	6.364	-	-	6.364	-	-
$n_{L}=n_{0} \cdot\left(1+\psi_{L} \cdot \phi\left(t, t_{0}\right)\right)$	$[-]$	-	10.738	16.008	-	12.032	16.744
A_{a}	$\left[\cdot 10^{-3} \mathrm{~m}^{2}\right]$	50.000	50.000	50.000	50.000	50.000	50.000
$A_{c^{\prime}} / n$	$\left[\cdot 10^{-3} \mathrm{~m}^{2}\right]$	133.571	79.156	53.100	133.571	70.648	50.765
$A_{e f}=A_{a}+A_{c} / n$	$\left[\cdot 10^{-3} \mathrm{~m}^{2}\right]$	183.571	129.156	103.100	183.571	120.648	100.765
$r_{c}=A_{a} \cdot a / A_{e f}$	$\left[\mathrm{~m}^{2}\right]$	0.368	0.523	0.655	0.368	0.560	0.670
$r_{a}=A_{c} \cdot a /\left(n \cdot A_{e f}\right)$	$[\mathrm{m}]$	0.982	0.827	0.695	0.982	0.791	0.680
I_{a}	$\left[\cdot 10^{-3} \mathrm{~m}^{4}\right]$	29.997	29.997	29.997	29.997	29.997	29.997
I_{c} / n	$\left[\cdot 10^{-3} \mathrm{~m}^{4}\right]$	0.696	0.412	0.277	0.696	0.368	0.264
$A_{e f} \cdot a_{c} \cdot a_{a}$	$\left[\cdot 10^{-3} \mathrm{~m}^{4}\right]$	66.325	55.864	46.946	66.325	53.376	45.922
$I_{e f}$	$\left[\cdot 10^{-3} \mathrm{~m}^{4}\right]$	97.018	86.274	77.220	97.018	83.741	76.184
$z_{e 1}$	$[\mathrm{~m}]$	0.493	0.648	0.780	0.493	0.685	0.795
$z_{e 2}$	$[\mathrm{~m}]$	0.243	0.398	0.530	0.243	0.435	0.545
$z_{e 3}$	$[\mathrm{~m}]$	0.243	0.398	0.530	0.243	0.435	0.545
$z_{e 4}$	$[\mathrm{~m}]$	1.817	1.662	1.530	1.817	1.625	1.515

4.3 Classification of effective cross-section

It is sufficient to verify classification of the effective cross-section only for the case with maximum distance of the upper edge of steel beam from the elastic neutral axis $z_{e 3}$. The limiting value of the width to thickness ratio for class 3 is defined STN EN 1993-1-1 in dependence on the stress ratio
when $\psi>-1: \quad c / t \leq \frac{42 \cdot \varepsilon}{0,67+0,33 \cdot \psi}$
when $\psi \leq-1: \quad c / t \leq 62 \cdot \varepsilon \cdot(1-\psi) \cdot \sqrt{(-\psi)}$

Fig. 9 Stress distribution in the cross-section

From the classification viewpoint, the most unfavourable location of elastic neutral axis is defined for effects of shrinkage at the end of service life ($t=100$ years) by the value $z_{e 3}=0.545 \mathrm{~m}$. It means that the maximum stresses will be at the bottom edge of steel beam (Fig. 9) and the stress ratio ψ may be expressed
$\psi=\frac{-\sigma_{4}}{\sigma_{3}}=\frac{-z_{e 4}}{z_{e 3}}=\frac{-1515}{545}=-2.78$,
and the limiting proportion is
$62 \cdot \varepsilon \cdot(1-\psi) \cdot \sqrt{-\psi}=62 \cdot \sqrt{235 / 355} \cdot(1+2.78) \cdot \sqrt{2.78}=317.93$

Providing that the effective depth of fillet weld connecting the flanges and web of steel beam is $a=7 \mathrm{~mm}$, the slenderness ratio of the web is
$\beta_{w}=\frac{c}{t_{w}}=\frac{2000-2 \cdot 7 \cdot \sqrt{2}}{14}=141.44<317.93 \Rightarrow$ the cross-section may be classified as class 3

4.4 Calculation of normal stresses

4.4.1 Stresses caused by part 1 of permanent loads (carried by steel beam)

$$
\begin{aligned}
& \sigma_{g 1,3}=-\frac{M_{g 1, k}}{I_{y a}} \cdot z_{a 3}=-\frac{5048.0 \cdot 10^{-3}}{29.997 \cdot 10^{-3}} \cdot 1.225=-206.15 \mathrm{MPa} \\
& \sigma_{g 1,4}=\frac{M_{g 1, k}}{I_{y a}} \cdot z_{a 4}=\frac{5048.0 \cdot 10^{-3}}{29.997 \cdot 10^{-3}} \cdot 0.835=\quad 140.52 \mathrm{MPa}
\end{aligned}
$$

Fig. 10 Stress distribution in the steel cross-section
4.4.2 Stresses caused by part 2 of permanent loads (carried by composite beam)

4.4.2.1 Stresses at the time of loading $\left(t_{0}=60\right.$ days $)$

$$
\begin{aligned}
& \sigma_{g 2,1}=-\frac{M_{g 2, k}}{I_{y, e f(60)} \cdot n_{0}} \cdot z_{e 1(60)}=-\frac{2408.0 \cdot 10^{-3}}{97.018 \cdot 10^{-3} \cdot 6.364} \cdot 0.493=-1.92 \mathrm{MPa} \\
& \sigma_{g 2,2}=-\frac{M_{g 2, k}}{I_{y, e f(60)} \cdot n_{0}} \cdot z_{e 2(60)}=-\frac{2408.0 \cdot 10^{-3}}{97.018 \cdot 10^{-3} \cdot 6.364} \cdot 0.243=-0.95 \mathrm{MPa} \\
& \sigma_{g 2,3}=-\frac{M_{g 2, k}}{I_{y, e f(60)}} \cdot z_{e 3(60)}=-\frac{2408.0 \cdot 10^{-3}}{97.018 \cdot 10^{-3}} \cdot 0.243=-6.03 \mathrm{MPa} \\
& \sigma_{g 2,4}=\frac{M_{g 2, k}}{I_{y, e f(60)}} \cdot z_{e 4(60)}=\frac{2408.0 \cdot 10^{-3}}{97.018 \cdot 10^{-3}} \cdot 1.817=\quad 45.10 \mathrm{MPa}
\end{aligned}
$$

Fig. 11 Stress distribution in composite cross-section

4.4.2.2 Stresses at the time of introducing bridge into service ($t=120$ days)

Gradual migration of normal stresses from the concrete slab to the steel beam due to creep of concrete may be considered by means of relaxation method, according to which the calculation is divided to two phases.

In the first phase it is assumed that after applying a long-term load (at the time t_{0}) the composite beam is fixated, in consequence of which the increase of deformation due to creep of concrete is zero. The creep of concrete causes that stresses in concrete slab gradually decrease - this phenomenon is denoted as relaxation. The relaxed value of stresses at the time of evaluation t may be calculated from expression
$\sigma(t)=\sigma\left(t_{0}\right) \cdot\left(1-\frac{\phi\left(t, t_{0}\right)}{1+\psi_{L} \cdot \phi\left(t, t_{0}\right)}\right)=\sigma\left(t_{0}\right) \cdot\left(1-\phi\left(t, t_{0}\right) \frac{n_{0}}{n_{L}}\right)=\sigma\left(t_{0}\right) \cdot \xi\left(t, t_{0}\right)$
where $\xi\left(t, t_{0}\right)$ is denoted as relaxation factor. The initial stresses in the concrete slab $\sigma\left(t_{0}\right)$ may be replaced by corresponding normal force N and bending moment M (see Fig. 11):
$N=\frac{\sigma_{1}+\sigma_{2}}{2} \cdot A_{c}$
$M=\frac{\sigma_{1}-\sigma_{2}}{2} \cdot \frac{I_{c}}{t_{c} / 2}=\frac{\sigma_{1}-\sigma_{2}}{t_{c}} \cdot I_{c}$
Due to relaxation, these internal forces will decrease to
$N_{I}=N \cdot \xi\left(t, t_{0}\right)$
$M_{I}=M \cdot \xi\left(t, t_{0}\right)$
Then, the reactions in fictitious support are
$N_{I I}=N-N_{I}=N \cdot\left[1-\xi\left(t, t_{0}\right)\right]$
$M_{I I}=M-M_{I}=M \cdot\left[1-\xi\left(t, t_{0}\right)\right]$
In the second phase, after unlocking the fixation from the first phase, these reactions affect the composite cross-section, which is strained by eccentric compression and bending. The final stresses in the composite cross section are given by superposition of both steps of the relaxation method.

In our case, the effect of stresses $\sigma_{g 2,1}$ and $\sigma_{g 2,2}$ in the concrete slab at the time $t_{0}=60$ days may be replaced by normal force N and bending moment M
$N=-\frac{(1.92+0.95) \cdot 10^{3}}{2} \cdot 0.850=-1219.75 \mathrm{kN}$
$M=\frac{(1.92-0.95) \cdot 10^{3}}{0.25} \cdot 0.004427=17.18 \mathrm{kNm}$

The relaxation factor at the time of introducing bridge into service ($t=120$ days) is equal to $\xi(120,60)=1-\phi(120,60) \cdot \frac{n_{0}}{n_{L(120)}}=1-0.62496 \cdot \frac{6.364}{10.738}=0.6296$

The stresses in concrete and corresponding internal forces decrease to following values
$N_{I}=N \cdot \xi(120,60)=-1219.75 \cdot 0.6296=-767.95 \mathrm{kN}$
$M_{I}=M \cdot \xi(120,60)=17.18 \cdot 0.6296=10.82 \mathrm{kNm}$

$$
\begin{aligned}
& \sigma_{g 2,1, I}=\sigma_{g 2, I} \cdot \xi(120,60)=-1.92 \cdot 0.6296=-1.21 \mathrm{MPa} \\
& \sigma_{g 2,2, I}=\sigma_{g 2,2} \cdot \xi(120,60)=-0.95 \cdot 0.6296=-0.60 \mathrm{MPa}
\end{aligned}
$$

The reactions from fictitious support affecting the composite cross-section are

$$
\begin{aligned}
& N_{I I}=N \cdot[1-\xi(120,60)]=-1219.75 \cdot(1-0.6296)=-451.80 \mathrm{kN} \\
& M_{I I}=M \cdot[1-\xi(120,60)]=17.18 \cdot(1-0.6296)=6.36 \mathrm{kNm}
\end{aligned}
$$

The moment due to eccentricity of the normal force $N_{\text {II }}$ is
$\Delta M_{I I}=N_{I I} \cdot r_{c}=451.80 \cdot 0.523=236.29 \mathrm{kNm}$

Corresponding stresses in the composite cross-section are as follows

$$
\begin{aligned}
& \sigma_{g 2,, I I I}=\frac{1}{n_{L}} \cdot\left(-\frac{N_{I I}}{A_{e f}}-\frac{M_{I I}+\Delta M_{I I}}{I_{y, e f}} \cdot z_{e 1}\right)=\frac{1}{10.738} \cdot\left(-\frac{451.80}{129.156}-\frac{6.36+236.29}{86.274} \cdot 0.648\right)=-0.50 \mathrm{MPa} \\
& \sigma_{g 2,2, I I}=\frac{1}{n_{L}} \cdot\left(-\frac{N_{I I}}{A_{e f}}-\frac{M_{I I}+\Delta M_{I I}}{I_{y, e f}} \cdot z_{e 2}\right)=\frac{1}{10.738} \cdot\left(-\frac{451.80}{129.156}-\frac{6.36+236.29}{86.274} \cdot 0.398\right)=-0.43 \mathrm{MPa} \\
& \sigma_{g 2,3, I I}=-\frac{N_{I I}}{A_{e f}}-\frac{M_{I I}+\Delta M_{I I}}{I_{y, e f}} \cdot z_{e 3}=-\frac{451.80}{129.156}-\frac{6.36+236.29}{86.274} \cdot 0.398=-4.62 \mathrm{MPa} \\
& \sigma_{g 2,4, I I}=-\frac{N_{I I}}{A_{e f}}+\frac{M_{I I}+\Delta M_{I I}}{I_{y, e f}} \cdot z_{e 4}=-\frac{451.80}{129.156}+\frac{6.36+236.29}{86.274} \cdot 1.662=1.18 \mathrm{MPa}
\end{aligned}
$$

Resultant stresses at the time of introducing bridge into service ($t=120$ days) due to 2 nd part of permanent loads including the creep effects are

$$
\begin{aligned}
& \sigma_{g 2,1}=\sigma_{g 2,1, I}+\sigma_{g 2,1, I I}=-1.21-0.50=-1.71 \mathrm{MPa} \\
& \sigma_{g 2,2}=\sigma_{g 2,2, I}+\sigma_{g 2,2, I I}=-0.60-0.43=-1.03 \mathrm{MPa} \\
& \sigma_{g 2,3}=\sigma_{g 2,3(60)}+\sigma_{g 2,2, I I}=-6.03-4.62=-10.65 \mathrm{MPa} \\
& \sigma_{g 2,4}=\sigma_{g 2,4(60)}+\sigma_{g 2,4, I I}=45.10+1.18=46.28 \mathrm{MPa}
\end{aligned}
$$

4.4.2.3 Stresses at the end of service life ($t=36525$ days)

The relaxation factor at the end of service life ($t=36525$ days) is equal to $\xi(36525,60)=1-\phi(36525,60) \cdot \frac{n_{0}}{n_{L(36525)}}=1-1.37771 \cdot \frac{6.364}{16.008}=0.4523$

The stresses in concrete and corresponding internal forces decrease to following values
$N_{I}=N \cdot \xi(36525,60)=-1219.75 \cdot 0.4523=-551.69 \mathrm{kN}$
$M_{I}=M \cdot \xi(36525,60)=17.18 \cdot 0.4523=7.77 \mathrm{kNm}$

$$
\begin{aligned}
& \sigma_{g 2,1, I}=\sigma_{g 2,1} \cdot \xi(36525,60)=-1.92 \cdot 0.4523=-0.87 \mathrm{MPa} \\
& \sigma_{g 2,2, I}=\sigma_{g 2,2} \cdot \xi(36525,60)=-0.95 \cdot 0.4523=-0.43 \mathrm{MPa}
\end{aligned}
$$

The reactions from fictitious support affecting the composite cross-section are
$N_{I I}=N \cdot[1-\xi(36525,60)]=-1219.75 \cdot(1-0.4523)=-668.06 \mathrm{kN}$
$M_{I I}=M \cdot[1-\xi(36525,60)]=17.18 \cdot(1-0.4523)=9.41 \mathrm{kNm}$
$\Delta M_{I I}=N_{I I} \cdot r_{c}=668.06 \cdot 0.655=437.58 \mathrm{kNm}$

Corresponding stresses in the composite cross-section are as follows

$$
\begin{aligned}
& \sigma_{g 2,, I I}=\frac{1}{n_{L}} \cdot\left(-\frac{N_{I I}}{A_{e f}}-\frac{M_{I I}+\Delta M_{I I}}{I_{y, e f}} \cdot z_{e 1}\right)=\frac{1}{16.008} \cdot\left(-\frac{668.06}{103.10}-\frac{9.41+437.58}{77.220} \cdot 0.78\right)=-0.69 \mathrm{MPa} \\
& \sigma_{g 2,2, I I}=\frac{1}{n_{L}} \cdot\left(-\frac{N_{I I}}{A_{e f}}-\frac{M_{I I}+\Delta M_{I I}}{I_{y, e f}} \cdot z_{e 2}\right)=\frac{1}{16.008} \cdot\left(-\frac{668.06}{103.10}-\frac{9.41+437.58}{77.220} \cdot 0.53\right)=-0.60 \mathrm{MPa} \\
& \sigma_{g 2,3, I I}=-\frac{N_{I I}}{A_{e f}}-\frac{M_{I I}+\Delta M_{I I}}{I_{y, e f}} \cdot z_{e 3}=-\frac{668.06}{103.10}-\frac{9.41+437.58}{77.220} \cdot 0.53=-9.55 \mathrm{MPa} \\
& \sigma_{g 2,4, I I}=-\frac{N_{I I}}{A_{e f}}+\frac{M_{I I}+\Delta M_{I I}}{I_{y, e f}} \cdot z_{e 4}=-\frac{668.06}{103.10}+\frac{9.41+437.58}{77.220} \cdot 1.53=2.38 \mathrm{MPa}
\end{aligned}
$$

Resultant stresses at the end of service life ($t=36525$ days) due to 2 nd part of permanent loads including the creep effects are

$$
\begin{aligned}
& \sigma_{g 2,1}=\sigma_{g 2,1, I}+\sigma_{g 2,1, I I}=-0.87-0.69=-1.56 \mathrm{MPa} \\
& \sigma_{g 2,2}=\sigma_{g 2,2, I}+\sigma_{g 2,2, I I}=-0.43-0.60=-1.03 \mathrm{MPa} \\
& \sigma_{g 2,3}=\sigma_{g 2,3(60)}+\sigma_{g 2,2, I I}=-6.03-9.55=-15.58 \mathrm{MPa} \\
& \sigma_{g 2,4}=\sigma_{g 2,4(60)}+\sigma_{g 2,4, I I}=45.10+2.38=47,48 \mathrm{MPa}
\end{aligned}
$$

4.4.3 Variable traffic load

Normal stresses caused by the load group "gr1a" (LM1 + pedestrian load of footpaths) are independent on the time of evaluation, because variable load represents a short-time effect that is not affected by creep.

$$
\begin{aligned}
& \sigma_{g r 1 a, 1}=-\frac{M_{g r 1 a, k}}{I_{y, e f} \cdot n_{0}} \cdot z_{e 1}=-\frac{7619.82 \cdot 10^{-3}}{97.018 \cdot 10^{-3} \cdot 6.364} \cdot 0.493=-6.08 \mathrm{MPa} \\
& \sigma_{g r 1 a, 2}=-\frac{M_{g r 1 a, k}}{I_{y, e f} \cdot n_{0}} \cdot z_{e 2}=-\frac{7619.82 \cdot 10^{-3}}{97.018 \cdot 10^{-3} \cdot 6.364} \cdot 0.243=-3.00 \mathrm{MPa} \\
& \sigma_{g r 1 a, 3}=-\frac{M_{g r l a, k}}{I_{y, e f}} \cdot z_{e 3}=-\frac{7619.82 \cdot 10^{-3}}{97.018 \cdot 10^{-3}} \cdot 0.243=-19.09 \mathrm{MPa} \\
& \sigma_{g r 1 a, 4}=\frac{M_{g r 1 a, k}}{I_{y, e f}} \cdot z_{e 4}=\frac{7619.82 \cdot 10^{-3}}{97.018 \cdot 10^{-3}} \cdot 1.817=\quad 142.71 \mathrm{MPa}
\end{aligned}
$$

4.4.4 Stresses caused by shrinkage of concrete

Analogous to the creep effect, the effect of shrinkage of concrete may be calculated again in two steps. In the first step, it is assumed that the steel beam, restraining to free deformation of the concrete slab due to shrinkage, is absolutely rigid, in consequence of which there arise primary normal tensile stresses $\sigma_{c s}$, uniformly distributed past the depth of slab (Fig. 12). These stresses may be replaced by normal force $N_{c s}=\sigma_{c s} \cdot A_{c}$. In the second step, the reaction from fictitious support equal to this normal force affects the composite cross-section as an eccentric compression force. The final stresses in the composite cross section are given again by superposition of stresses obtained in the both steps.

Fig. 12 Primary stresses in the concrete slab due to shrinkage

According to STN EN 1992-1-1, the total strain due to the shrinkage of concrete $\varepsilon_{c s}$ is given by summation of two parts - the strain due to draining shrinkage $\varepsilon_{c d}$ and the strain due to autogenous shrinkage $\varepsilon_{c a} \Rightarrow \varepsilon_{c s}=\varepsilon_{c d}+\varepsilon_{c a}$.

Development of the strain due to draining shrinkage $\varepsilon_{c d}$ in time is defined by expression $\varepsilon_{c d}(t)=\beta_{d s}\left(t, t_{s}\right) \cdot k_{h} \cdot \varepsilon_{c d, 0}$
where $k_{h} \cdot \varepsilon_{c d, 0}$ is the final value of strain due to the drying shrinkage $\left(\varepsilon_{c d, \infty}\right)$. The factor k_{h} (see Tab. 2) depends on equivalent depth of slab $h_{0}=\frac{2 A_{c}}{u}$ [mm], where A_{c} is area of the concrete slab and u is the perimeter of member that is in contact with atmosphere.

Tab. 2 Values of k_{h}

h_{0}	k_{h}
100	1.00
200	0.85
300	0.75
≥ 500	0.70

Coefficient $\beta_{d s}\left(t, t_{s}\right)$ describes development of drying shrinkage in time and may by calculated by using following expression

$$
\beta_{d s}\left(t, t_{s}\right)=\frac{t-t_{s}}{\left(t-t_{s}\right)+0.04 \cdot \sqrt{h_{0}^{3}}}
$$

where t is an age of concrete [days] at the time of evaluation and t_{s} is an age of concrete at begin of the drying shrinkage, which should be generally assumed to be one day according to STN EN 1994-2.

The basic strain due to drying shrinkage may be obtained as follows

$$
\begin{aligned}
& \varepsilon_{c d, 0}=0.85 \cdot\left[\left(220+110 \cdot \alpha_{d s 1}\right) \cdot e^{\left(-\alpha_{d s 2} \cdot \frac{f_{c m}}{f_{c m 0}}\right)}\right] \cdot 10^{-6} \cdot \beta_{R H} \\
& \beta_{R H}=1.55 \cdot\left[1-(R H / 100)^{3}\right]
\end{aligned}
$$

where $f_{c m}=f_{c k}+8[\mathrm{MPa}]$ is the mean compression strength of concrete at the age 28 days and $f_{c m 0}=10 \mathrm{MPa}$.

The coefficients $\alpha_{d s 1}, \alpha_{d s 2}$ depend on the type of cement and are given by values:

- for cement class S: $\alpha_{d s 1}=3, \alpha_{d s 2}=0.13$
- for cement class $\mathrm{N} \quad \alpha_{d s 1}=4, \alpha_{d s 2}=0.12$
- for cement class R $\alpha_{d s 1}=6, \alpha_{d s 3}=0.11$

Development of the strain due to autogenous shrinkage $\varepsilon_{c a}$ in time is defined by expression
$\varepsilon_{c a}(t)=\beta_{a s}(t) \cdot \varepsilon_{c a}(\infty)$
where coefficient $\beta_{a s}(t)$ describing development of autogenous shrinkage in time may by obtained from expression
$\beta_{a s}\left(t_{s}\right)=1-e^{-0.2 \sqrt{t}}$
and the final value of strain due to the autogenous shrinkage is given by expression $\varepsilon_{c a}(\infty)=2.5 \cdot\left(f_{c k}-10\right) \cdot 10^{-6}$

In our case, on the assumption that the shrinkage will start to affect the composite girder from the first day after concreting ($t_{s}=1$ day) and the cement class N will be applied, then at the relative humidity $R H=80 \%$ it will be valid:

$$
\begin{aligned}
& \beta_{R H}=1.55 \cdot\left[1-(80 / 100)^{3}\right]=0.7564 \\
& \varepsilon_{c d, 0}=0.85 \cdot\left[(220+110 \cdot 4) \cdot e^{\left(-0.12 \cdot \frac{38}{10}\right)}\right] \cdot 10^{-6} \cdot 0.7564=0.000269 \\
& \beta_{d s}\left(t, t_{s}\right)=\frac{120-1}{(120-1)+0.04 \cdot \sqrt{250^{3}}}=0.42943 \quad \text { for } t=120 \text { days } \\
& \beta_{d s}\left(t, t_{s}\right)=\frac{36525-1}{(36525-1)+0.04 \cdot \sqrt{250^{3}}}=0.99569 \quad \text { for } t=36525 \text { days } \\
& \varepsilon_{c d}(120)=0.42943 \cdot 0.80 \cdot 0.000269=\quad 0.0000924 \\
& \varepsilon_{c d}(36525)=0.99569 \cdot 0.80 \cdot 0.000269=0.0002143 \\
& \varepsilon_{c a}(\infty)=2.5 \cdot(30-10) \cdot 10^{-6}=0.00005 \\
& \beta_{a s}(120)=1-e^{-0.2 \sqrt{120}}=0.88818 \\
& \beta_{a s}(36525)=1-e^{-0.2 \sqrt{36525}}=1.00000 \\
& \varepsilon_{c a}(120)=0.88818 \cdot 0.00005= \\
& \varepsilon_{c a}(36525)=1.00000 \cdot 0.00005=0.0000444 \\
&
\end{aligned}
$$

The total strains due to shrinkage are:

- at the time $t=120$ days: $\quad \varepsilon_{c s}=0.0000924+0.0000444=0.0001368$
- at the time $t=36525$ days: $\varepsilon_{c s}=0.0002143+0.0000500=0.0002643$

4.4.4.1 Stresses at the time of introducing bridge into service ($t=\mathbf{1 2 0}$ days)

The primary normal stress in the concrete slab due to shrinkage is defined as follows:

$$
\sigma_{c s}=\varepsilon_{c s}(t) \cdot \frac{E_{c m}}{1+\psi_{L} \cdot \phi_{t}}=\varepsilon_{c s}(t) \cdot E_{c m} \cdot \frac{n_{0}}{n_{L}}=0.0001368 \cdot 33000 \cdot \frac{6.364}{12.032}=2.39 \mathrm{MPa}
$$

Corresponding normal force is
$N_{c s}=\sigma_{c s} \cdot A_{c}=2.39 \cdot 10^{3} \cdot 0.850=2031.50 \mathrm{kN}$
The moment due to eccentricity of the normal force $N_{c s}$ is

$$
M_{c s}=N_{c s} \cdot r_{c}=2031.50 \cdot 0.560=1137.64 \mathrm{kNm}
$$

The final stresses in the composite cross section due to shrinkage are

$$
\begin{aligned}
& \sigma_{c s 1}=\sigma_{c s}+\frac{1}{n_{L}} \cdot\left(-\frac{N_{c s}}{A_{e f}}-\frac{M_{c s}}{I_{y, e f}} \cdot z_{e 1}\right)=2.39+\frac{1}{12.032} \cdot\left(-\frac{2031.50}{120.648}-\frac{1137.64}{83.741} \cdot 0.685\right)=0.22 \mathrm{MPa} \\
& \sigma_{c s 2}=\sigma_{c s}+\frac{1}{n_{L}} \cdot\left(-\frac{N_{c s}}{A_{e f}}-\frac{M_{c s}}{I_{y, e f}} \cdot z_{e 2}\right)=2.39+\frac{1}{12.032} \cdot\left(-\frac{2031.50}{120.648}-\frac{1137.64}{83.741} \cdot 0.435\right)=0.50 \mathrm{MPa} \\
& \sigma_{c s 3}=-\frac{N_{c s}}{A_{e f}}-\frac{M_{c s}}{I_{y, e f}} \cdot z_{e 3}=-\frac{2031.50}{120.648}-\frac{1137.64}{83.741} \cdot 0.435=-22.75 \mathrm{MPa} \\
& \sigma_{c s 4}=-\frac{N_{c s}}{A_{e f}}+\frac{M_{c s}}{I_{y, e f}} \cdot z_{e 4}=-\frac{2031.50}{120.648}+\frac{1137.64}{83.741} \cdot 1.625=5.24 \mathrm{MPa}
\end{aligned}
$$

4.4.4.2 Stresses at the end of service life ($t=36525$ days)

The primary normal stress in the concrete slab due to shrinkage and corresponding internal forces affecting the composite cross-section are

$$
\begin{aligned}
& \sigma_{c s}=\varepsilon_{c s}(t) \cdot E_{c m} \cdot \frac{n_{0}}{n_{L}}=0.0002643 \cdot 33000 \cdot \frac{6.364}{16.744}=3.31 \mathrm{MPa} \\
& N_{c s}=\sigma_{c s} \cdot A_{c}=3.31 \cdot 10^{3} \cdot 0.850=2813.50 \mathrm{kN} \\
& M_{c s}=N_{c s} \cdot r_{c}=2813.50 \cdot 0.670=1855.05 \mathrm{kNm}
\end{aligned}
$$

The final stresses in the composite cross section due to shrinkage are

$$
\begin{aligned}
& \sigma_{c s 1}=\sigma_{c s}+\frac{1}{n_{L}} \cdot\left(-\frac{N_{c s}}{A_{e f}}-\frac{M_{c s}}{I_{y, e f}} \cdot z_{e 1}\right)=3.31+\frac{1}{16.744} \cdot\left(-\frac{2813.50}{100.765}-\frac{1855.05}{75.184} \cdot 0.795\right)=0.47 \mathrm{MPa} \\
& \sigma_{c s 2}=\sigma_{c s}+\frac{1}{n_{L}} \cdot\left(-\frac{N_{c s}}{A_{e f}}-\frac{M_{c s}}{I_{y, e f}} \cdot z_{e 2}\right)=3.31+\frac{1}{16.744} \cdot\left(-\frac{2813.50}{100.765}-\frac{1855.05}{75.184} \cdot 0.545\right)=0.84 \mathrm{MPa} \\
& \sigma_{c s 3}=-\frac{N_{c s}}{A_{e f}}-\frac{M_{c s}}{I_{y, e f}} \cdot z_{e 3}=-\frac{2813.50}{100.765}-\frac{1855.05}{75.184} \cdot 0.545=-41.37 \mathrm{MPa} \\
& \sigma_{c s 4}=-\frac{N_{c s}}{A_{e f}}-\frac{M_{c s}}{I_{y, e f}} \cdot z_{e 4}=-\frac{2813.50}{100.765}+\frac{1855.05}{75.184} \cdot 1.515=9.46 \mathrm{MPa}
\end{aligned}
$$

4.5 Cross-section check

The final check of cross-section is presented in Tab. 3, where the values of normal stresses due to partial load effects are summarized. The variable loads are represented only by the load group "grla" and so no combination rules needs to be applied.

Tab. 3 Resultant normal stresses

Loads	Stresses due to partial loads [MPa]							
	At the time of introducing into service ($\mathrm{t}=120$ days)				At the end of service life ($\mathrm{t}=36525$ days)			
	σ_{1}	σ_{2}	σ_{3}	σ_{4}	σ_{1}	σ_{2}	σ_{3}	σ_{4}
Part 1 of permanent loads	-	-	-206.15	140.52	-	-	-206.15	140.52
Part 2 of permanent loads	-1.71	-1.03	-10.65	46.28	-1.56	-1.03	-15.58	47.48
Shrinkage	0.22	0.50	-22.75	5.24	0.47	0.84	-41.37	9.46
Variable load - "grla"	-6.08	-3.00	-19.09	142.71	-6.08	-3.00	-19.09	142.71
Resultant stresses [MPa]	-7.57	-3.53	-258.64	334.75	-7.17	-3.19	-282.19	340.17
Design strength [MPa]	30.00	30.00	355.00	355.00	30.00	30.00	355.00	355.00

5 DESIGN OF SHEAR CONNECTION

Shear connection (together with transverse reinforcement) should be provided to transmit the longitudinal shear force between the concrete and the structural steel element, ignoring the effect of natural bond between the two. At present, headed stud shear connectors welded to the upper steel flange are mostly used. We propose the headed studs with diameter $\phi 20 \mathrm{~mm}$ and overall nominal height 100 mm , made of steel with ultimate limit strength $f_{u}=340 \mathrm{MPa}$. The studs will be arranged in two lines.

Characteristic resistance of the stud is defined as the smaller value from:
$P_{\mathrm{Rk}}=0.8 \cdot f_{\mathrm{u}} \cdot \pi \cdot d^{2} / 4=0.8 \cdot 340 \cdot 10^{3} \cdot \pi \cdot 0.02^{2} / 4=85.45 \mathrm{kN}$
$P_{\mathrm{Rk}}=0.29 \cdot \alpha \cdot d^{2} \cdot \sqrt{f_{c k} \cdot E_{c m}}=0.29 \cdot 1.0 \cdot 0.02^{2} \cdot \sqrt{30 \cdot 33000}=230.84 \mathrm{kN}$
where $\quad \alpha=0.2\left(\frac{h_{\text {sc }}}{d}+1\right)$ for $3 \leq h_{\text {sc }} / d \leq 4$

$$
\alpha=1 \quad \text { for } h_{\mathrm{sc}} / d>4\left(\text { in our case } h_{\mathrm{sc}} / d=100 / 20>4\right)
$$

It means that characteristic resistance of the stud is 85.45 kN . Then the design value is
$P_{r d}=P_{r k} / \gamma_{V}=85.45 / 1.25=68.36 \mathrm{kN}$

The shear connectors should transmit the longitudinal force in the slab between the cross section with zero slip and the nearest cross section in which the maximum slip would occur in case of absence of shear connection (critical cross sections in Fig. 13). The necessary number of studs results from equilibrium condition
$n \cdot P_{r d}=N_{c}$
where N_{c} represents the maximum longitudinal force on the steel-concrete interface between the critical cross sections (mid-span and support), which is equal to normal resistance of the concrete slab.

Fig. 13 Slip of the concrete slab in case of absence of shear connection (x - critical cross sections)
$N_{c}=A_{c} \cdot f_{c d}=0.85 \cdot 20 \cdot 10^{3}=17000 \mathrm{kN}$
Then, the necessary theoretical number of studs (in the half of span) is:
$n=\frac{N_{c}}{P_{r d}}=\frac{17000}{68.36}=248.7$
We propose 250 studs in two lines. Theoretical distances between the couples of studs are:
$e=\frac{L / 2}{n / 2}=\frac{20000}{250 / 2}=160 \mathrm{~mm}$
We propose following arrangement of studs in the half of span (Fig. 14):
$71 \times 140 \mathrm{~mm}+53 \times 190 \mathrm{~mm}$ (124 gaps or 125 couples of studs)

Fig. 14 Arrangement of studs on the beam

REFERENCES

[1] STN EN 1990: 2004 Eurocode: Basis of structural design
[2] STN EN 1990/A1 Annex2 Eurocode. Basis of structural design: Application for bridges
[3] STN EN 1990/A1/NA Eurocode. Basis of structural design: Application for bridges. National annex.
[4] STN EN 1991-2: 2006 Eurocode 1: Actions on structures: Part 2: Traffic loads on bridges
[5] STN EN 1991-2/NA Eurocode 1: Actions on structures: Part 2: Traffic loads on bridges. National annex
[6] STN EN 1992-1-1: 2006 Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings.
[7] STN EN 1993-1-1: 2006 Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings
[8] STN EN 1993-1-5: 2008 Eurocode 3: Design of steel structures- Part 1-5: Plated structural elements
[9] STN EN 1994-2: 2008 Eurocode 4: Design of composite steel and concrete structures Part 2: General rules and rules for bridges.
[10] Bujňák, J. - Hric, M.: Steel structures and bridges (Some problems of design and assessment) University of Žilina, 1995. In Slovak.

